TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π–MOSIII)

## 2SK2611

# DC-DC Converter, Relay Drive and Motor Drive Applications

• Low drain–source ON resistance  $: RDS (ON) = 1.1 \Omega (typ.)$ 

• High forward transfer admittance  $|Y_{fs}| = 7.0 \text{ S (typ.)}$ 

• Low leakage current  $: I_{DSS} = 100 \,\mu\text{A} \,(\text{max}) \,(V_{DS} = 720 \,\text{V})$ 

• Enhancement-mode :  $V_{th} = 2.0 \text{ to } 4.0 \text{ V (Vps} = 10 \text{ V, Ip} = 1 \text{ mA)}$ 

### **Absolute Maximum Ratings (Ta = 25°C)**

| Characteris             | stics                  | Symbol           | Rating     | Unit |
|-------------------------|------------------------|------------------|------------|------|
| Drain-source voltage    |                        | $V_{DSS}$        | 900        | V    |
| Drain-gate voltage (Ro  | <sub>SS</sub> = 20 kΩ) | $V_{DGR}$        | 900        | V    |
| Gate-source voltage     |                        | $V_{GSS}$        | ±30        | ٧    |
| Drain current           | DC (Note 1)            | ΙD               | 9          | Α    |
|                         | Pulse (Note 1)         | I <sub>DP</sub>  | 27         | Α    |
| Drain power dissipation | n (Tc = 25°C)          | $P_{D}$          | 150        | W    |
| Single pulse avalanche  | e energy<br>(Note 2)   | E <sub>AS</sub>  | 663        | mJ   |
| Avalanche current       |                        | I <sub>AR</sub>  | 9          | Α    |
| Repetitive avalanche e  | nergy (Note 3)         | E <sub>AR</sub>  | 15         | mJ   |
| Channel temperature     |                        | T <sub>ch</sub>  | 150        | °C   |
| Storage temperature ra  | ange                   | T <sub>stg</sub> | -55 to 150 | °C   |



Weight: 4.6 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

#### **Thermal Characteristics**

| Characteristics                        | Symbol                 | Max   | Unit |  |
|----------------------------------------|------------------------|-------|------|--|
| Thermal resistance, channel to case    | R <sub>th (ch-c)</sub> | 0.833 | °C/W |  |
| Thermal resistance, channel to ambient | R <sub>th (ch-a)</sub> | 50    | °C/W |  |

Note 1: Please use devices on condition that the channel temperature is below 150°C.

Note 2:  $V_{DD}$  = 90 V,  $T_{ch}$  = 25°C (initial), L = 15 mH,  $R_G$  = 25  $\Omega$ ,  $I_{AR}$  = 9 A

Note 3: Repetitive rating: Pulse width limited by maximum channel temperature

This transistor is an electrostatic sensitive device.

Please handle with caution.

## **Electrical Characteristics (Ta = 25°C)**

| Charac                                          | cteristics      | Symbol                | Test Condition                                                             | Min | Тур. | Max | Unit |
|-------------------------------------------------|-----------------|-----------------------|----------------------------------------------------------------------------|-----|------|-----|------|
| Gate leakage cu                                 | ırrent          | $I_{GSS}$             | V <sub>GS</sub> = ±30 V, V <sub>DS</sub> = 0 V                             | _   | _    | ±10 | μΑ   |
| Gate-source bre                                 | eakdown voltage | V (BR) GSS            | I <sub>G</sub> = ±10 μA, V <sub>DS</sub> = 0 V                             | ±30 | _    | _   | V    |
| Drain cut-off cu                                | rrent           | I <sub>DSS</sub>      | V <sub>DS</sub> = 720 V, V <sub>GS</sub> = 0 V                             | _   | _    | 100 | μA   |
| Drain-source br                                 | eakdown voltage | V <sub>(BR) DSS</sub> | I <sub>D</sub> = 10 mA, V <sub>GS</sub> = 0 V                              | 900 | _    | _   | V    |
| Gate threshold v                                | oltage/         | $V_{th}$              | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 1 mA                              | 2.0 | _    | 4.0 | V    |
| Drain-source O                                  | N resistance    | R <sub>DS</sub> (ON)  | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 4 A                               | _   | 1.1  | 1.4 | Ω    |
| Forward transfer                                | r admittance    | Y <sub>fs</sub>       | V <sub>DS</sub> = 15 V, I <sub>D</sub> = 4 A                               | 3.0 | 7.0  | _   | S    |
| Input capacitano                                | e               | C <sub>iss</sub>      |                                                                            |     | 2040 | _   | pF   |
| Reverse transfe                                 | r capacitance   | C <sub>rss</sub>      |                                                                            |     | 45   | _   |      |
| Output capacitance                              |                 | Coss                  |                                                                            | _   | 190  | _   |      |
| Switching time                                  | Rise time       | t <sub>r</sub>        | $V_{GS} = V_{OU}$ $V_{GS} = V_{OU}$ $V_{DD} = 400V$                        | _   | 25   | _   |      |
|                                                 | Turn-on time    | t <sub>on</sub>       |                                                                            | _   | 60   | _   | ne   |
|                                                 | Fall time       | t <sub>f</sub>        |                                                                            | _   | 20   | _   | ns   |
|                                                 | Turn-off time   | t <sub>off</sub>      | Duty $\leq 1\%$ , $t_W = 10 \mu s$                                         | _   | 95   | _   |      |
| Total gate charge (gate-source plus gate-drain) |                 | Qg                    |                                                                            | _   | 58   | _   |      |
| Gate-source charge                              |                 | $Q_{gs}$              | $V_{DD} \approx 400 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 9 \text{ A}$ |     | 32   | _   | nC   |
| Gate-drain ("miller") Charge                    |                 | $Q_{gd}$              |                                                                            |     | 26   | _   |      |

## Source-Drain Ratings and Characteristics (Ta = 25°C)

| Characteristics                           | Symbol           | Test Condition                                                                   | Min | Тур. | Max  | Unit |
|-------------------------------------------|------------------|----------------------------------------------------------------------------------|-----|------|------|------|
| Continuous drain reverse current (Note 1) | I <sub>DR</sub>  | _                                                                                | _   | _    | 9    | Α    |
| Pulse drain reverse current (Note 1)      | I <sub>DRP</sub> | _                                                                                | _   | _    | 27   | Α    |
| Forward voltage (diode)                   | V <sub>DSF</sub> | I <sub>DR</sub> = 9 A, V <sub>GS</sub> = 0 V                                     | _   | _    | -1.9 | V    |
| Reverse recovery time                     | t <sub>rr</sub>  | I <sub>DR</sub> = 9 A, V <sub>GS</sub> = 0 V, dI <sub>DR</sub> / dt = 100 A / μs | ı   | 1.6  | _    | μs   |
| Reverse recovery charge                   | Q <sub>rr</sub>  | 1DR - 9 A, VGS - 0 V, αIDR / αι - 100 A / μs                                     | 1   | 20   | _    | μC   |

## Marking



Note 4: A line under a Lot No. identifies the indication of product Labels.

Not underlined: [[Pb]]/INCLUDES > MCV

Underlined: [[G]]/RoHS COMPATIBLE or [[G]]/RoHS [[Pb]]

Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. The RoHS is the Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.