TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (π -MOS VI) # 2SK4108 ### **Switching Regulator Applications** Unit: mm $\begin{array}{ll} \bullet & \text{Low drain-source ON resistance} & : \text{RDS (ON)} = 0.\ 21\Omega\ (\text{typ.}) \\ \bullet & \text{High forward transfer admittance} & : |Y_{fs}| = 14\ \text{S (typ.}) \\ \bullet & \text{Low leakage current} & : \text{IDSS} = 100\ \mu\text{A (max)}\ (\text{VDS} = 500\ \text{V}) \\ \bullet & \text{Enhancement mode} & : \text{Vth} = 2.0 \text{\sim4.0 V (VDS} = 10\ \text{V, ID} = 1\ \text{mA}) \\ \end{array}$ ### **Absolute Maximum Ratings (Ta = 25°C)** | Characteristic | | Symbol | Rating | Unit | | |--|----------------|------------------|---------|------|--| | Drain-source voltage | | V_{DSS} | 500 | V | | | Drain-gate voltage (R _{GS} = 20 kΩ) | | V_{DGR} | 500 | V | | | Gate-source voltage | | V_{GSS} | ±30 | V | | | Drain current | DC (Note 1) | I _D | 20 | Α | | | | Pulse (Note 1) | I _{DP} | 80 | Α | | | Drain power dissipation (Tc = 25°C) | | P_{D} | 150 | W | | | Single-pulse avalanche energy (Note 2) | | E _{AS} | 960 | mJ | | | Avalanche current | | I _{AR} | 20 | Α | | | Repetitive avalanche energy (Note 3) | | E _{AR} | 15 | mJ | | | Channel temperature | | T _{ch} | 150 | °C | | | Storage temperature range | | T _{stg} | -55~150 | °C | | Weight: 4.6 g (typ.) Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc). #### **Thermal Characteristics** | Characteristic | Symbol | Max | Unit | |--|------------------------|-------|------| | Thermal resistance, channel to case | R _{th (ch-c)} | 0.833 | °C/W | | Thermal resistance, channel to ambient | R _{th (ch-a)} | 50 | °C/W | Note 1: Ensure that the channel temperature does not exceed 150°C. Note 2: V_{DD} = 90 V, T_{ch} = 25°C (initial), L = 4.08 mH, R_G = 25 Ω , I_{AR} = 20 A Note 3: Repetitive rating: pulse width limited by maximum channel temperature This transistor is an electrostatic-sensitive device. Handle with care. # **Electrical Characteristics (Ta = 25°C)** | Chara | cteristic | Symbol | Test Condition | Min | Тур. | Max | Unit | |--------------------------------------|-----------------|----------------------|---|-----|------|------|------| | Gate leakage cu | rrent | I _{GSS} | V _{GS} = ±25 V, V _{DS} = 0 V | | _ | ±10 | μA | | Gate-source bre | eakdown voltage | V (BR) GSS | I _G = ±10 μA, V _{DS} = 0 V | ±30 | _ | _ | V | | Drain cutoff curr | ent | I _{DSS} | V _{DS} = 500 V, V _{GS} = 0 V | _ | _ | 100 | μA | | Drain-source br | eakdown voltage | V (BR) DSS | I _D = 10 mA, V _{GS} = 0 V | 500 | _ | _ | V | | Gate threshold v | oltage | V_{th} | V _{DS} = 10 V, I _D = 1 mA | 2.0 | _ | 4.0 | V | | Drain-source Ol | N resistance | R _{DS} (ON) | V _{GS} = 10 V, I _D = 10 A | _ | 0.21 | 0.27 | Ω | | Forward transfer | admittance | Y _{fs} | V _{DS} = 10 V, I _D = 10 A | 4.0 | 14 | _ | S | | Input capacitano | е | C _{iss} | | | 3400 | _ | pF | | Reverse transfer capacitance | | C _{rss} | V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz | _ | 25 | _ | | | Output capacitance | | Coss | | | 320 | _ | | | Switching time | Rise time | t _r | V_{GS} $\stackrel{10}{0}$ $\stackrel{V}{\bigvee}$ $\stackrel{I_{D}}{\bigvee}$ $\stackrel{10}{\bigvee}$ | _ | 70 | _ | | | | Turn on time | t _{on} | | _ | 130 | _ | | | | Fall time | t _f | | _ | 70 | _ | ns | | | Turn off time | t _{off} | | _ | 280 | _ | | | Total gate charg
plus gate-drain) | | Qg | | | 70 | | | | Gate-source charge | | Q _{gs} | $V_{DD} \approx 400 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$ | | 45 | _ | nC | | Gate-drain ("Miller") charge | | Q_{gd} | | | 25 | _ | | # Source-Drain Ratings and Characteristics (Ta = 25°C) | Characteristic | Symbol | Test Condition | Min | Тур. | Max | Unit | |---|------------------|---|-----|------|------|------| | Continuous drain reverse current (Note 1) | I _{DR} | _ | _ | _ | 20 | Α | | Pulse drain reverse current (Note 1) | I _{DRP} | _ | | _ | 80 | Α | | Forward voltage (diode) | V _{DSF} | I _{DR} = 20 A, V _{GS} = 0 V | _ | _ | -1.7 | V | | Reverse recovery time | t _{rr} | I _{DR} = 20 A, V _{GS} = 0 V | | 1300 | | ns | | Reverse recovery charge | Q _{rr} | dl _{DR} / dt = 100 A / μs | - | 20 | _ | μC | ### Marking 2 2007-06-29